

GCEP Energy Tutorial Wind 101

Patrick Riley October 14, 2014

Imagination at work.

Agenda

- Introduction & fundamentals
- Wind resource
- Aerodynamics & performance
- Design loads & controls
- Scaling
- Farm Considerations
- Technology Differentiators
- Economics
- Technology Development Areas

GCEP Wind 101 14 October 2014

Power from Wind Turbines

Power in Wind

$$P_{wind} = \frac{1}{2} \rho_V^3 Area$$

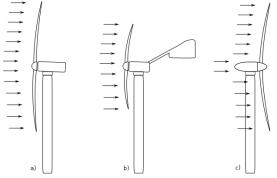
Extractable Power from Wind turbine

v = wind speed Importance of site identification (local wind resource) & understanding of wind shear

$$P_{wind} = \frac{1}{2} c_{P} \rho v^{3} Area$$

Area = rotor swept area Power increases with rotor²

C_p = power coefficient a measure of aerodynamic efficiency of extracting energy from the wind


imagination at work

GCEP Wind 101| 14 October 2014 © 2014 General Electric Company – All rights reserved

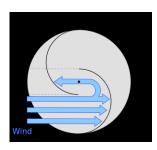
Configurations

Horizontal-Axis (HAWT)

Upwind vs. Downwind

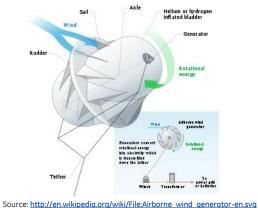
Source: <u>http://en.wikipedia.org/wiki/File:Wind.turbine.yaw.system.configurations.svg</u> Copyright 2009 Hanuman Wind, used with permission.

Number of Blades


http://en.wikipedia.org/wiki/File:Water_Pumping_ Windmill.jpg Copyright 2008 Ben Franske, used with permission. GCEP Wind 101 14 October 2014

Vertical-Axis (VAWT)

Lift Based (Darrieus) vs. Drag-Based (Savonius)



Source: http://en.wikipedia.org/wiki/File:Darrieus-windmill.jpg Copyright 2007 aarchiba, used with permission.

Source: http://en.wikipedia.org/wiki/File:Savonius-rotor_en.svg Copyright 2008 Ugo14, used with permission.

Airborne Wind Turbine

Copyright 2008 James Provost, used with permission.

Utility-Scale Turbine Types

Convergence of industry

Horizontal axis Upwind 3 blades Variable rotor speed Active (independent) pitch

Main differentiators

Direct drive vs. gearbox Generator design Full vs. Partial Power Conversion Controls

GCEP Wind 101 14 October 2014

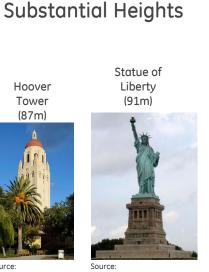
Basic Wind Turbine Terminology

Term	Typical Value*	Definition	
Rated Power	1.6MW	Max nominal power output	
Diameter	100m	Rotor diameter	
Capacity Factor	48%	<u>Annual Energy Production (kWh)</u> Rated Power (kW) x 24 x 365	
Avg wind speed	7.5m/s	Annual average wind speed at hub height	
Turbulence Intensity	16%	σu/Uavg @ Uavg = 15 m/s	
IEC class		Uavg = 8.5 m/s @ hub height 50-yr, 10-min extreme wind = 42.5 m/s 50-yr, 3-sec extreme gust = 59.5 m/s Turbulence = 18% (IEC = International Electrotechnical Commission)	
Design life	20 years	Calculated Life according IEC 61400 and DP's	

*values can vary significantly with turbine & site

GCEP Wind 101 14 October 2014

 $\ensuremath{\mathbb{C}}$ 2014 General Electric Company – All rights reserved


Utility Scale Wind Uniqueness

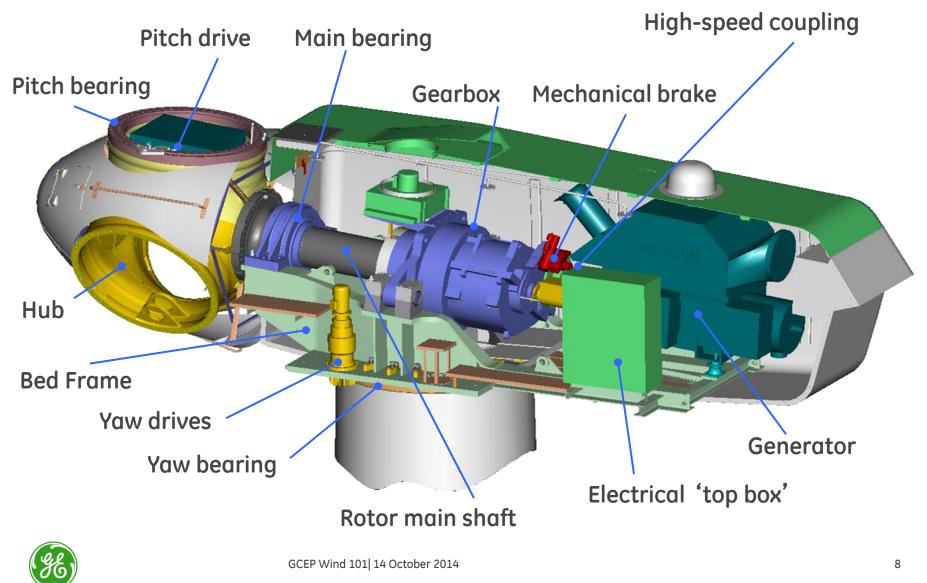
Rotor	
40 to 70 tons	
77 to 120m diameter	

Nacelle 57 to 82 tons

Tower 132 to 1200 tons 60m to 139m hub height

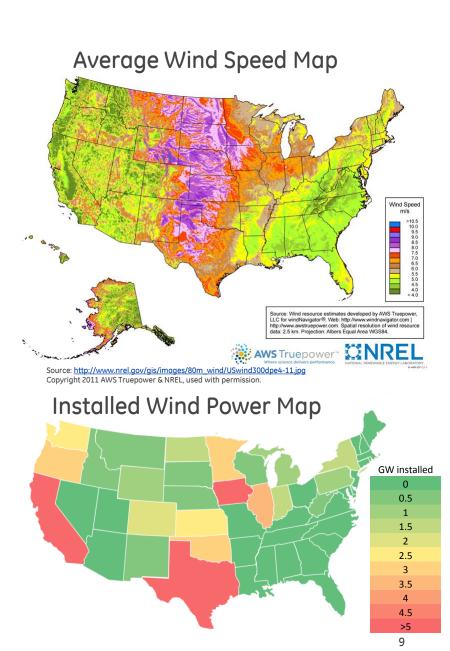
Source: http://en.wikipedia.org /wiki/File:Hoover Towe r Stanford January 2 013.jpg Copyright 2013 King of Hearts, used with permission.

http://en.wikipedia.org/wiki/ File:Statue_of_Liberty_7.jpg Placed in the Public Domain


... but Values Low Cost Design ... <u>Simplicity</u>

GCEP Wind 101 14 October 2014

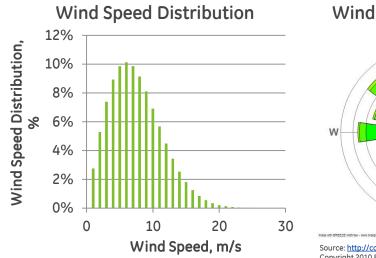
Conventional Layout

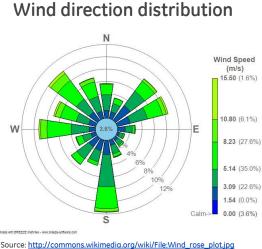


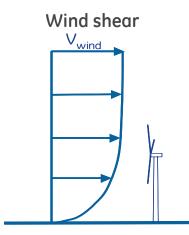
Wind Resource

The Wind Resource is the #1 Driver of Wind Economics

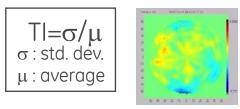
The most productive wind sites:


- have high average wind speeds
- are generally somewhat remote from population centers
- integration with utility grid is generally challenging




GCEP Wind 101 14 October 2014

Wind Characteristics



Source: <u>http://commons.wikimedia.org/wiki/File:Wind_rose_plot.jp</u> Copyright 2010 BREEZE Software, used with permission.

Extreme winds 1-yr & 50-yr extreme gusts

Turbulence intensity

IEC Class A: 18% at 15 m/s IEC Class B: 16% at 15 m/s

Copyright TOM, used with permission.

GCEP Wind 101 14 October 2014

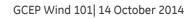
Voice of Physics – Actuator Disk Theory

Model

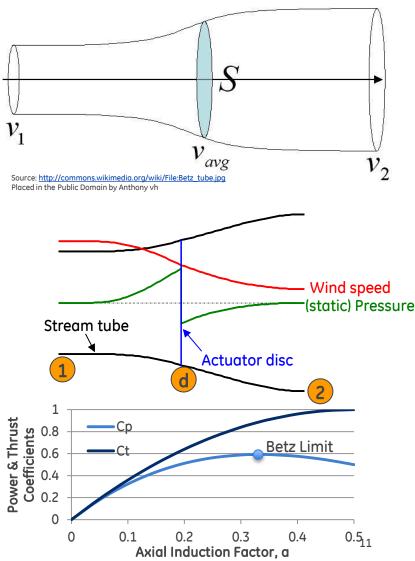
- Rotor is a permeable disc
- Velocity reduction is equally distributed before/after the rotor and $V_2 = (1-2a) \cdot V_1$ *a*: Axial Induction factor for slow down
- Power: Change in momentum caused by pressure difference across disk

$$P = \dot{m} \cdot \Delta p_{d} = \frac{1}{2} \rho V_{1}^{3} A_{d} \left\{ 4a(1-a)^{2} \right\}$$

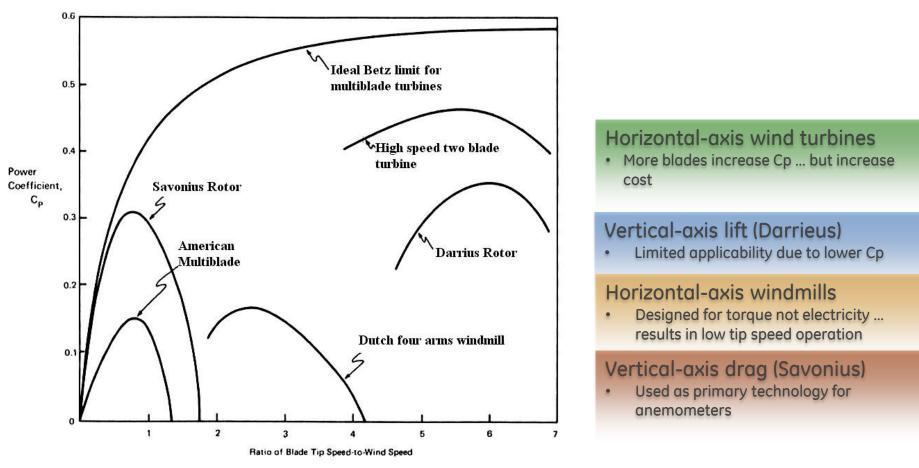
 \rightarrow for V2=0: only load, no power


Main Results

$$\rightarrow$$
 Power coefficient: $C_p = \frac{P_{ower}}{\frac{1}{2}\rho V_1^3 A_d} = 4a(1-a)^2$

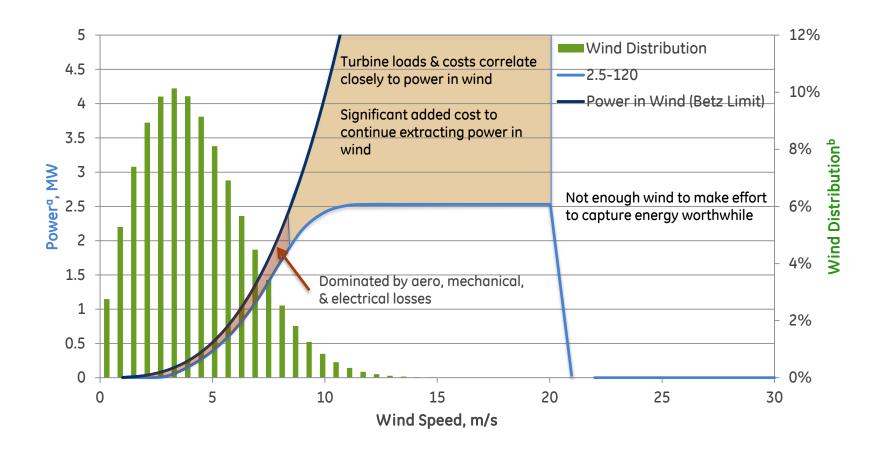

n

$$\rightarrow$$
 Thrust coefficient: $C_t = \frac{T_{hrust}}{\frac{1}{2}\rho V_1^2 A_d} = 4a(1-a)$


 \rightarrow Maximum extractable Power is 59.3%

 $\ensuremath{\mathbb{C}}$ 2014 General Electric Company – All rights reserved

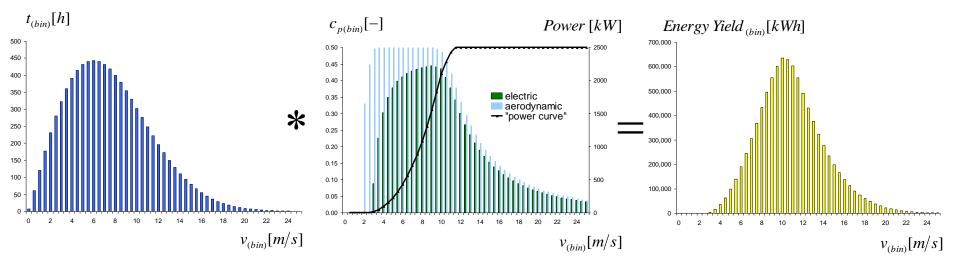
Optimizing Cp's through Configuration


Source: http://www.intechopen.com/books/fundamental-and-advanced-topics-in-wind-power/wind-turbines-theory-the-betz-equationand-optimal-rotor-tip-speed-ratio

Copyright 2011 Magdi Ragheb and Adam M. Ragheb , used with permission.

GCEP Wind 101 14 October 2014

Power Curve

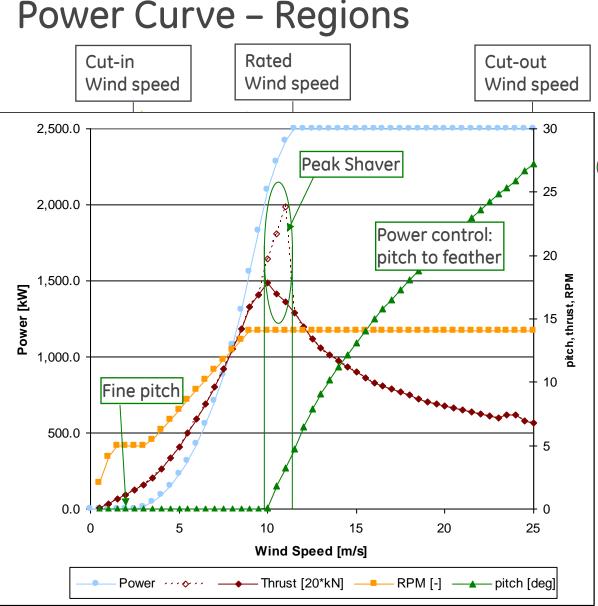

a) Power is for a 120m rotor diameter turbine

b) Wind distribution calculated from Weibull distribution, 7.5 m/s average wind speed, k=2

GCEP Wind 101 14 October 2014

Annual Energy Production (AEP)

$$\sum_{Weibull} t_{(bin)} \cdot v_{(bin)}^3 \cdot \frac{1}{2} \cdot \rho \cdot c_{p \ elec.(bin)} \cdot \pi \cdot R^2 = AEP_{actual}$$


AEP is the product of:

- Wind distribution v^3
- Rotor size (swept area) R²
- Efficiency (aerodynamic, mechanical, electrical)

GCEP Wind 101 14 October 2014

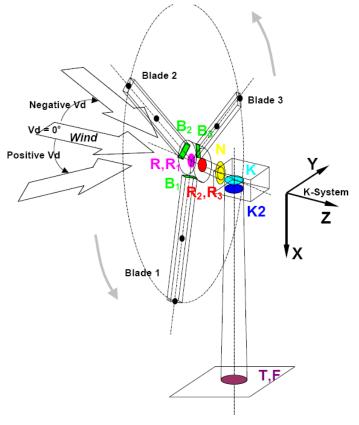
 $\ensuremath{\mathbb{C}}$ 2014 General Electric Company – All rights reserved

Power curve region:
below cut-in
cut-in to rated (partial power)
rated to cut-out

- Variable speed:
 RPM ~ wind speed
- Constant speed: RPM constant
- Pitch actuation:
 - > Fine pitch
 - > Peak shaver
 - > Power control
- \Rightarrow (Thrust) Load reduction

GCEP Wind 101 14 October 2014

Loads Analysis

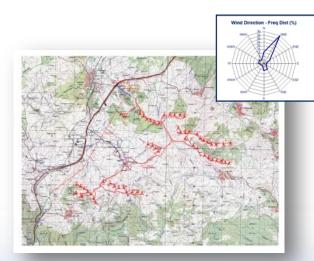

Simulation Driven ... incorporate wind turbulence, control strategy, aero & structural properties

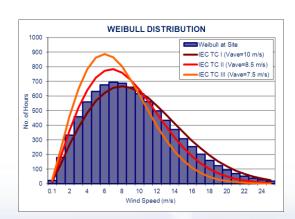
Structural Design ... used to design components

Certification ... meet specific design load cases (DLC's)

- IEC 61400 ed. 2 / ed.3 (-1 onshore; -2 small; -3 offshore)
- **DIBt** (partly identical with IEC, but HH-dep.windspeeds, add. DLCs)
- NVN 11400 (similar to IEC)

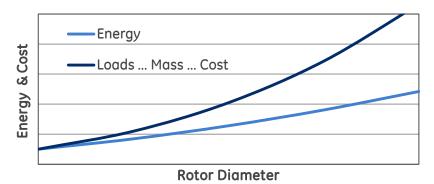
Bankability ... required by customer & financing institutions




IEC 61400-1 Ed2		WIND TURBINE CLASS			
		I	II	III	
V _{ave} [m/s]		10	8.5	7.5	
V _{ref} [m/s]		50	42.5	37.5	
TI ₁₅ [%]	a / b	18/16	18/16	18/16	
Air density [kg/m³]		1.225			
Vertical shear [-]		0.2/0.11			
Flow angles [°]		< 8			

GCEP Wind 101 14 October 2014

Site Specific Mechanical Loads Analysis

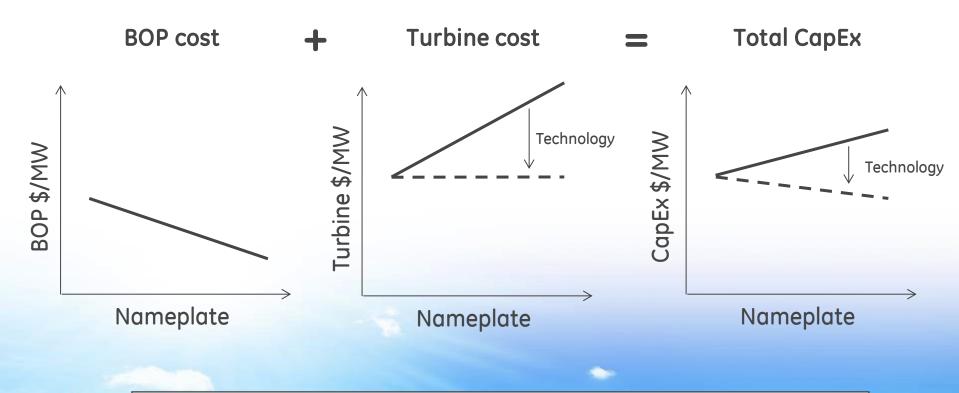

Determine turbine loads suitability at site specific locations

GCEP Wind 101 14 October 2014

Square-Cube Law

Energy capture is proportional to RD^2 Loads \rightarrow Mass \rightarrow Cost are proportional to RD^3

... but this is a generalization & some economies of scale exist



... and some step changes like blade logistics

GCEP Wind 101 14 October 2014

Turbine scale ... costs and benefits

Technology advancements required to beat the cost curve

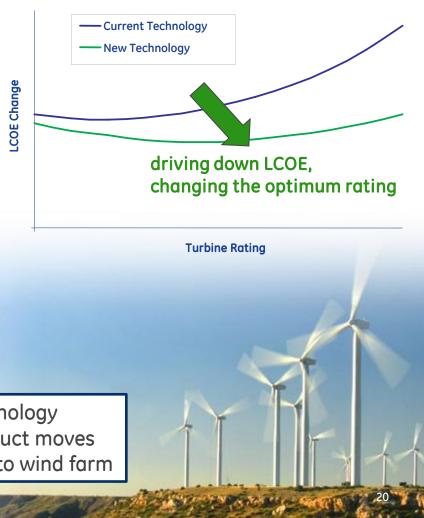
GCEP Wind 101 14 October 2014

Wind System Engineering Objectives

Goal: Assess the system-level value of new technologies & next-generation product designs

• Many system-level trades rating & rotor diameter hub height control strategies (loads vs. AEP) component technologies (cost vs. perf) rotational speed (noise, DT size, loads)

Need system-level approach to optimize


performance capital cost operation & maintenance

Non-obvious interactions abound

Optimizing technology development & product moves around lifetime value to wind farm

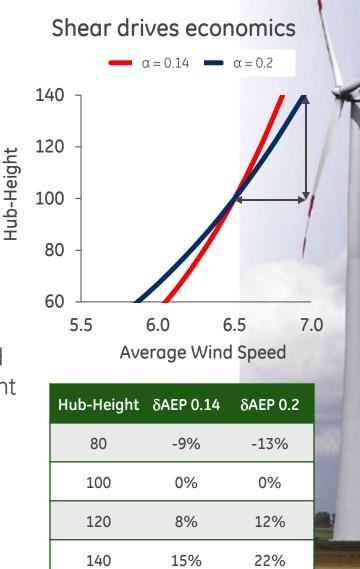
GCEP Wind 101 14 October 2014

© 2014 General Electric Company – All m

Tower Height Optimization

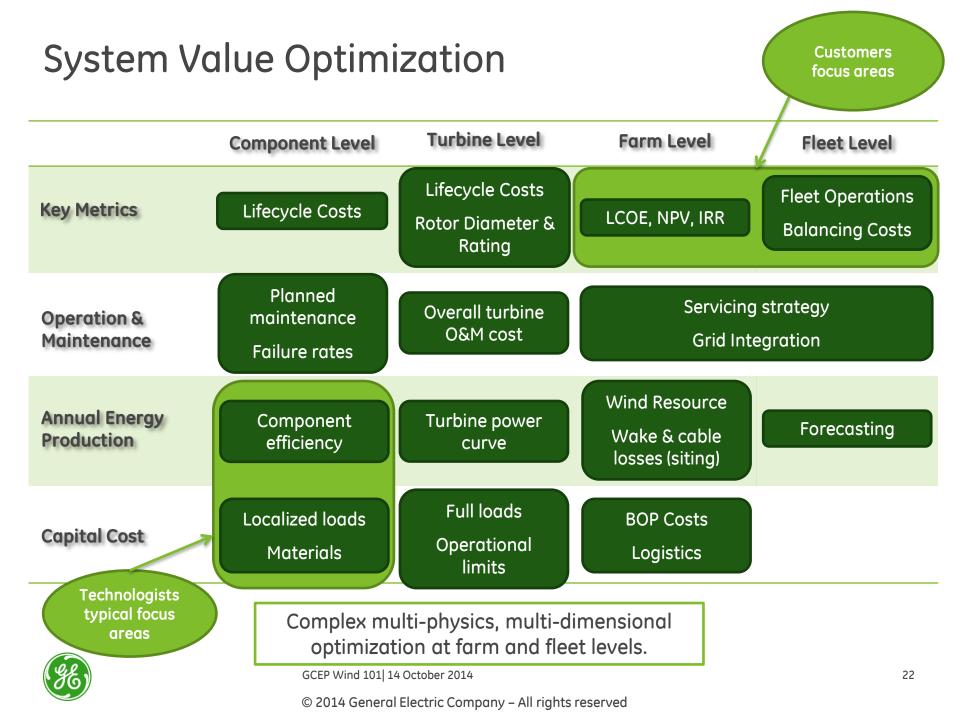
Benefits of Tall Tower

- Higher mean wind speed
- Reduced wind shear
- Reduced turbulence

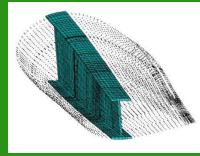

Modeling

Typical applied Power law in flat terrain:

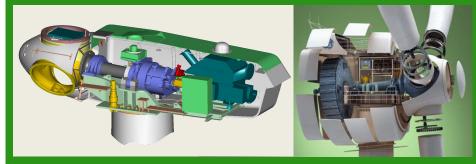
- $V_{h} = V_{ref} (h/h_{ref})^{\alpha}$
 - h is the height above ground
 - α is the wind shear coefficient
 - Typically $0.14 \le \alpha \le 0.20$ (Depends on terrain)


Negative shear

- Local increase in wind speed near ground
- Occurs on top of ridges and hills



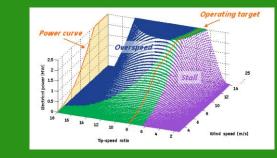
GCEP Wind 101 14 October 2014



Technology Differentiators among Utility-Scale OEM's

Blade Materials ... Carbon vs. Glass

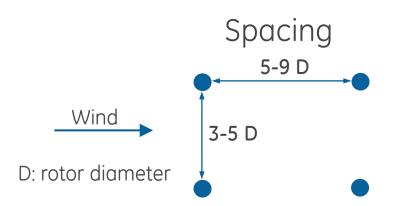
Drivetrain Architecture ... DD vs. Geared



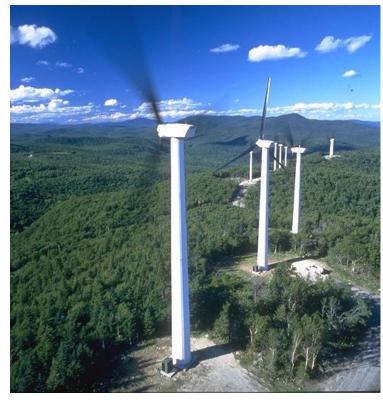
Power Conversion ... Full Power vs. Partial

Power

Controls



GCEP Wind 101 14 October 2014


How are Wind Farms Laid Out?

Examples:

along a ridge

GCEP Wind 101 14 October 2014

Micro Siting Basics

Find the best wind

Select the best turbine model

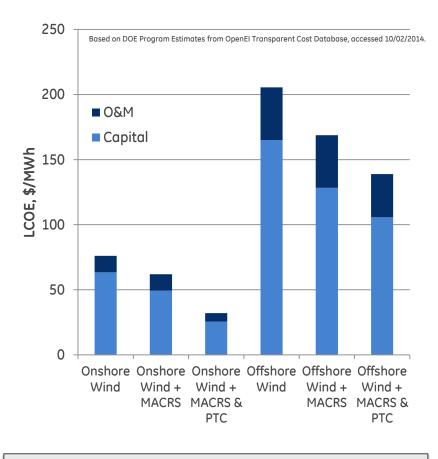
Place turbines in energetic most locations on site

Minimize wake effects

Optimize BOP

Maximize AEP given constraints

Waked turbines


Source: http://www.noaanews.noaa.gov/stories2011/images/vattenfall-image_300.jpg Copyright 2010 Vattenfall, used with permission.

GCEP Wind 101 14 October 2014

Economics – LCOE & Incentives

LCOE

Onshore wind competitive in many places

Incentives

Production Based

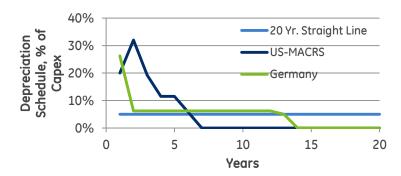
Production Tax Credit (PTC)

not taxed, 10 years, in addition to PPA

US 2.3 cents/kWh

Feed-In Tariffs

common in Europe, replaces PPA


Germany has ~11.3 cents/kWh 🥏

Installed Cost Based

Investment Tax Credit (ITC)

like solar in US (30% of installed capex), no longer valid for utility-scale wind)

Accelerated Capital Depreciation

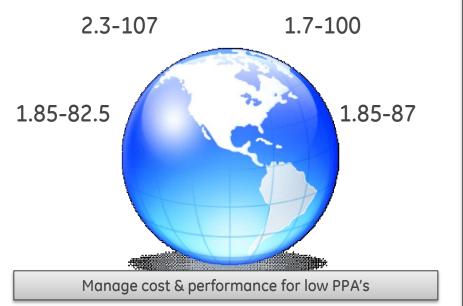
GCEP Wind 101 14 October 2014

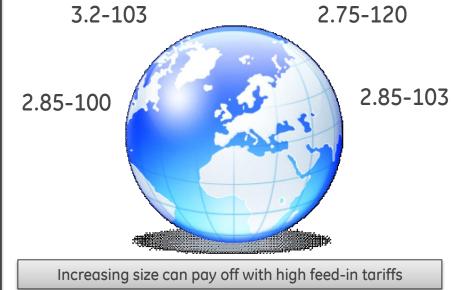
Economics – Markets Drive Product Platforms

North American Optimized Product

Constrained either by land available or electrical interconnect ... Large Project Sizes (often >50 turbines)

Competes with variable cost of gas ... low PPA values


Moderate wind resource ... IEC Class II & III


European Optimized Product

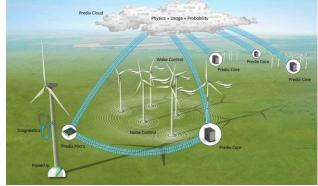
Constrained by land available ... Small farm sizes (often <10 turbines)

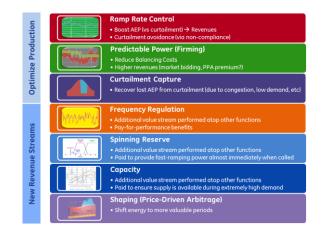
Strong feed-in tariff rates ... AEP valued

Poorer wind resource ... IEC Class III & IV

GCEP Wind 101 14 October 2014

Current Research Trends


Cost Effective Scaling ... Large Rotor & Tower Technologies


Minimize Loads ... Advanced Controls & Sensors

Farm Level Optimization ... Farm Control & Big Data Analytics

Grid Friendly ... Storage Integration

GCEP Wind 101 14 October 2014

Join the conversation

GE Global Research website www.ge.com/research

Edison's Desk – GE's longest running blog www.edisonsdesk.com

Edison's Desk on Twitter twitter.com/edisonsdesk

Youtube account www.youtube.com/grcblog

GE's Genius of the Day www.ge.com/genius

We're on Facebook too!

ook too! Engage with GE scientists and engineers about innovation and science

Get short, timely messages from GE Global Research.

edisonsdesk

althcare Unveils Innovativ

A f ⊨

GE'S GENIUS OF THE DAY January 7, 2011

WHAT PROBLEMS ARE

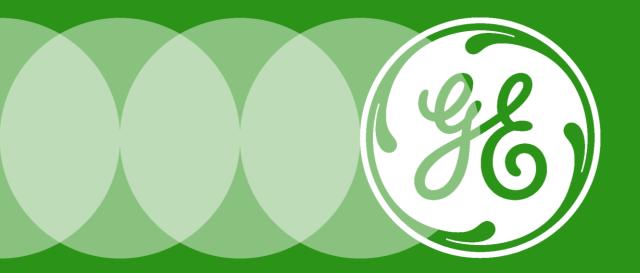
YOU TRYING TO SOLVE?

WHAT'S THE BEST ADVICE

8 Calendar GE Global Research Site

CATHRYN OLSEP

chnology Lab


GCEP Wind 101 14 October 2014

© 2014 General Electric Company – All rights reserved

30- 4-

00 · M-

· · · ·

